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Abstract. Using Legendre polynomials (spherical basis) asymptotic expansions are given in the
singularitiesr = 0,∞ of the Schr̈odinger equation of the diamagnetic Coulomb problem with
infinite nuclear mass. It is pointed out that the truncated expansion converges to an unbounded
solution atr = ∞. The complete expansion has either a trivial or a divergent solution only.

1. Introduction

The quantum mechanics of a hydrogen atom of infinite nuclear mass in a strong homogeneous
magnetic fieldH seems to be settled; the extensive results concerning eigenvalues, transition
probabilities, and related problems are summarized by Ruderet al (1994) where it is indicated
that basic new results are not expected concerning the low-lying levels. Current interest has
shifted towards problems in which the established results constitute a basis to handle more
involved problems like the search of quantum chaos, or to treat the effect of the finite nuclear
mass, the motion of the whole hydrogen atom (Lai and Salpeter 1995, Kopidakiset al 1996,
Potekhin 1998) or how to compute the opacity of the strongly magnetized hydrogen plasma
(Potekhin and Pavlov 1993, Meraniet al 1995). The results in these topics may play a crucial
role in interpreting some laboratory experiments or the spectrum of stars with suspected strong
magnetic fields (Jordan 1992, van Riper 1988, Venturaet al 1992).

Mathematical analysis of the diamagnetic Coulomb problem was more or less neglected
by Ruderet al (1994) and R̈osneret al (1984) because their main goal was seemingly
to provide exhaustive numerical results including moderately excited levels which are not
accessible by variational or upper–lower bound methods. Concerning the excited levels,
their tables represent the sole published source of numerical results covering a wide range
of field strengths. Their eigenvalues, wavefunctions and transition probabilities were based
on the simplest eigenfunction expansions in terms of Legendre polynomials and harmonic
oscillator wavefunctions—‘spherical’ and Landau basis, respectively. Using the basis of Liu
and Starace (1987) (LaS) an analysis and numerical solution in the non-adiabatic approximation
of the problem at high field strengths were given by Barcza (1996) and Balla and Benkő
(1996). These studies confirmed the results from the Landau basis and indicated only that
the LaS basis fits the problem better. Analysis and an efficient way of numerical solution of
quasi-separable quantum mechanical eigenvalue problems by eigenfunction expansions were
discussed in an earlier paper (Barcza 1994). This paper can be regarded as an actual example
of its considerations.
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At low and moderate field strength the mathematical and numerical analysis of the
diamagnetic Coulomb problem is of great interest both in its own right and as a standard
quasi-separable quantum mechanical eigenvalue problem which is of the simplest kind if the
spherical basis is used. In this case the particularly simple structure of the coupled second-
order ordinary differential equations arising from the use of the basis functions allows one
to draw conclusions by almost purely analytical means, among them being the important
conclusion that the truncated form of the wavefunction, which must be used to make the
problem numerically tractable, converges to a wavefunction which is itself unbounded.

The paper is organized as follows. Section 2 describes the asymptotic analysis of
the spherical basis and gives the complete set of solutions in the singular points of the
eigenvalue problem. Section 3 discusses the truncated solutions which are all of finite norm but
converge to an unbounded wavefunction. Section 4 gives the complete solution which differs
fundamentally from the truncated solution: it is not convergent for even parity, i.e. its series
representation does not have a limit and furthermore its norm is infinite, while for odd parity
only the trivial solution exists. Sections 5 and 6 present a discussion and draw conclusions.

The atomic units (¯h = 1, me = 1, e = 1) will be used throughout; here, and in
a forthcoming paper,ω = e|H|/2mec is the magnetic field parameter, andω = 1 if
|H| = 4.70× 109 G.

2. Expansions of the wavefunction in terms of Legendre polynomials

The Schr̈odinger equation for stationary states of the diamagnetic Coulomb problem with
infinite nuclear mass is[(

p− 1

2c
H × r

)2

− 2Z

r
− 2E

]
9(r, η, ϕ) = 0 (1)

(Ruderet al 1994) wherer(r, θ, ϕ) are the spherical coordinates,η = cosθ , p = (h̄/i)∇,
Z = 1, c−1 = 1

137.037. By assuming

9 = (2π)−1/2r−1ψ(r, η)exp(in3ϕ) (2)

ϕ is separated and (1) takes the form

∂2ψ

∂r2
−
(
ω2r2 − 2E∗ − 2Z

r

)
ψ +

1

r2

[
∂

∂η
(1− η2)

∂ψ

∂η
−
(

n2
3

1− η2
− ω2r4η2

)
ψ

]
= 0

(3)

whereE∗ = E − ωn3 andn3 is the magnetic quantum number.
If

ψ =
∞∑

l=|n3|+p
ul(r)P

|n3|
l (η) (4)

is assumed whereP |n3|
l is an associated Legendre polynomial, and some standard steps are

performed (Ruderet al1994), (3) can be transformed to the eigenvalue problem of the coupled
system of second-order ordinary differential equations of the form

d2ul

dr2
−
[
L0(l, |n3|)ω2r2 − 2E∗ − 2Z

r
+
l(l + 1)

r2

]
ul

+ω2r2[L2(l, |n3|)ul+2 +L−2(l, |n3|)ul−2] = 0

l = |n3| + p, |n3| + p + 2, . . .

(5)



The diamagnetic Coulomb problem at low field strength 1189

whereul(r) is called the channel coefficient,

L−2 = (l − 1− |n3|)(l − |n3|)/(2l − 3)(2l − 1) (6)

L0 = [4l3 + 6l2 + 2l(2n2
3 − 1) + 2n2

3 − 2]/(4l2 − 1)(2l + 3) (7)

L2 = (l + 2 + |n3|)(l + 1 + |n3|)/(2l + 5)(2l + 3). (8)

The definition ofP |n3|
l and the interrelations of the associated Legendre polynomials leading

to (6)–(8) are given by Erd́elyi (1953). Because of the invariance of (3) with respect to
η ↔ −η, l runs in (4) and the following formulae over even or odd values,p = 0, 1 for
even and odd solutions respectively. The boundary condition is thatψ must be bounded in
the domain−1 6 η 6 1, 0 6 r 6∞. Equations (5) are, from a mathematical point of view,
a finitely coupled infinite system of second-order ordinary differential equations. For reasons
of practicality 16 N <∞ terms can be taken into account in a numerical integration; these
must be the firstN terms;E∗(N) will denote an eigenvalue of the truncated system. The norm
is

(9,9) =
2N−2+|n3|+p∑
l=|n3|+p

2(l + |n3|)!
(2l + 1)(l − |n3|)!

∫ ∞
0

dru2
l (r) =

∑
l

u2
〈l〉 (9)

where the terml with the largestu2
〈l〉 can be regarded as the dominant term or channel.

The singular points of (5) arer = 0 and∞, around them asymptotic expansions will now
be given.

2.1. The channel coefficients at06 r < 1

In the regular singularityr = 0, (5) is completely decoupled: in the interval 06 r < 1
its bounded solution begins in such a manner that the coupling does not enter in the terms
m = 0, 1 of the series

ul(r) =
∞∑
m=0

c(l)m r
m+l+1 (10)

where

c
(l)
m+1 = −

2Zc(l)m + 2E∗c(l)m−1 + ω2[L−2c
(l−2)
m−1 − L0c

(l)
m−3 +L2c

(l+2)
m−5]

l[2l(m + 1) +m2 + 3m + 2]

m = 0, 1, . . . , c(l−2)
−1 = c(l)−3 = c(l)−2 = c(l)−1 = c(l+2)

−5 = · · · = c(l+2)
−1 = 0.

(11)

Because of the asymptotic decoupling the coefficientsc
(l)
0 of numberN are free parameters;

one of them is the normalization factor. (By definition a parameter of an asymptotic solution
is free if the boundary condition is automatically satisfied at its arbitrary value.) In the
interval 16 r < ∞ the power series (10) is suitable for numerical purposes as well if its
two deficiences are controlled: atr � 1 its convergence is slow and the loss of digits—
maxm |c(l)m rm+l+1/ul(r)|—is high when computingul(r) ≈ 0.

2.2. The channel coefficients atr →∞
In the irregular singularityr = ∞ by assuming

ul(r) = Cl [1 + d−4/r
4 + O(r−5)] exp(−ω3r2/2 +d1r + d0 ln r − d−1/r) (12)
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equations (5) were transformed to the system of coupled equations

Cl{ω2(32 − L0)r
2 − 23ωd1r + d2

1 −3ω(2d0 + 1) + 2E∗

+(2Z + 2d1d0 − 23ωd−1)/r + [d2
0 − d0 − 2d1d−1− l(l + 1)]/r2

+O(r−3)}[1 + d(l)−4/r
4] + ω2r2{Cl+2L2[1 + d(l+2)

−4 /r4]

+Cl−2L−2[1 + d(l−2)
−4 /r4]} = 0 l = |n3| + p, . . . , |n3| + p + 2N − 2.

(13)

The exponential factor of (12) regularized the singularity in the same sense asrl of (10): it
made it possible to find an asymptotic series in terms ofr−1, 06 r−1� 1. This was done by
transforming (5) into Ricatti equations. Since it is an identical factor for anyl, it was omitted
in (13). The first coefficient isd−4 which depends onl. By equating the coefficient of the
different powers ofr with zero in (13),3, d1, d0 etc can be determined.

If N > 2 the equations (13) remain coupled, i.e. the coefficient ofr2 gives a recurrence
relation forCl :

L−2(l, n3)Cl−2 + [32 − L0(l, n3)]Cl +L2(l, n3)Cl+2 = 0

l = |n3| + p, . . . , |n3| + p + 2N − 2.
(14)

(14) is a system of homogeneous linear equations of numberN which has a non-trivial solution
if its determinant vanishes as a function of32. In terms of a continued fraction this is expressed
by

FN(3
2) = a1 +

b1

a2+
· · · bN−1

aN
= 0 (15)

wheream = 32−L0(l+2m−2, n3),bm = −L−2(l+2m, n3)L2(l+2m−2, n3)with l = |n3|+p.
N ′ will denote the number of the roots32

1, . . . , 3
2
N ′ of (15). In (13) the coefficients ofr, r0,

r−1 give

d1 = 0 d0 = E∗/ω3− 1
2 d−1 = Z/ω3 if 3 6= 0

d1 = ±(−2E∗)1/2 d0 = ∓Z/(−2E∗)1/2 if 3 = 0
(16)

and the coefficients of the higher powers ofr−1 can be elaborated successively, in principle,
up to any order.

It is obvious that (5) has linearly independent bounded asymptotic solutions in numberN ′:
they are of the form (12) with31, . . . , 3N ′ . These linearly independent solutions constitute a
basis to expand the general asymptotic solution: the linear combination

ul(r) =
N ′∑
m=1

C
(m)
l [1 + d(m,l)−4 r−4 + O(r−5)] exp[−ω3mr

2/2 +d(m)1 r

+d(m)0 ln r − d(m)−1 /r] l = |n3| + p (17)

will lead to the proper general asymptotic solution of (5) atr →∞ with the free parameters
C
(m)
|n3|+p of numberN ′; one of them is the normalization factor. The other channel coefficients

ul(r) with l = |n3| + p + 2, . . . are likewise of the form (17); however,C(m)|n3|+p+2, . . . are not
free parameters but can be obtained by solving (14) with3m,m = 1, . . . , N ′.

With the method used in this section a complete set of the allowed asymptotic channel
coefficients was produced in the neighbourhood of both singular points of (5) and the number
of free parameters of the bounded solutions was determined. The value of the free parameters
c
(l)
0 , l = |n3| + p, . . . , |n3| + p + 2N − 2 andC(m)|n3|+p, m = 1, . . . , N ′ can only be determined

by numerical methods. By fixing their values an asymptotic particular solution is obtained.
The omitted terms of the asymptotic channel coefficients—∝ r−l at r = 0,∝ exp(+ω3r2/2)
at r →∞—had to be ruled out automatically because of unboundedness.
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3. Truncated solutions

In the asymptotic ranger →∞ the truncated solutions are formed by setting

C
(m)

|n3|+p+2N̂
= 0 for anym N̂ > N. (18)

This is equivalent to approximation ofψ by a finite sum which involves an artificial termination
of the infinite series (4). This step is warranted if (4) is convergent in any fixed point(r, η).

If 1 6 N < ∞, (15) is anN th-degree polynomial in terms of32 with roots of number
N ′ = N .

3.1. Adiabatic approximation

The adiabatic approximation for anyl is defined by

d2ul

dr2
−
[
L0ω

2r2 − 2E∗(1) − 2Z

r
+
l(l + 1)

r2

]
ul = 0 (19)

whereN = 1, and itsul approximates roughly ther dependence of the dominant channel.
(19) has a composite spectrum (Barcza 1996) i.e. ifω � 1 the low-lying levels follow Balmer
spacing while the highly excited ones (where 2Z/r is negligible) follow the quasi-Landau
spacing

E
∗(1)
k → ωL

1/2
0 (l, n3)(l + 2k + 3

2) (20)

wherek > 0 is a large integer, and a continuum does not exist for anyω > 0. With increasing
ω or E∗(1) the Balmer spacing is replaced more and more by the quasi-Landau spacing. The
norm (9) is finite for anyul , the absorption threshold does not exist because atr → ∞ the
potential is proportional tor2. The quasi-Landau spacing varies from( 8

3)
1/2ω ≈ 1.63ω (l = 0)

to 21/2ω ≈ 1.42ω (l →∞) if n3 = 0, from ( 16
5 )

1/2ω ≈ 1.78ω to 21/2ω if n3 = 1 etc, which
values allow even the experimentally found≈1.5ω at and somewhat above the absorption
threshold (Veldtet al 1992). Compared with the case 1< N <∞ the numerical solution of
the adiabatic approximation (19) is much easier because of the possibility of continuing the
expansion in the exponent of (12) and cutting short the interval in which a numerical integration
is necessary to fit the solutions from (10) and (12).

In spite of the attractive physical and mathematical features the adiabatic approximation
in the spherical basis is of scant value sinceul(r)P

|n3|
l (η) approximatesψ poorly.

3.2. Non-adiabatic approximations with finite N

If the non-adiabatic approximation of type 1< N <∞ is considered the composite character
of the spectrum is preserved: Balmer-like quantization if 0< ω � 1 andE∗(N) < 0, with
increasingE∗(N) convergence to a quasi-Landau quantization of the levels of always-finite
norm (9), and lack of continuum.

A rule is that atω ≈ 0 the dominant channel has the valuel belonging to the
hydrogenic level from which the level evolves with increasingω. This rule manifests itself in
|c(l)0 | � |c(l±m)0 |,m = 2, 4, . . . , l −m > 0.

Some eigenvalues are plotted in figure 1 from a numerical solution of (15) which indicates
3m → 0 with increasingN , m = 1, 2, . . . ,� N . Since the exponentials with32, . . . , 3N

vanish more rapidly atr →∞ the dominant term of (17) will bem = 1 if C(1)|n3|+p 6= 0,m = 2

if C(1)|n3|+p = 0 etc, this is the rule forC(m)|n3|+p at anyω. This asymptotic form anticipates the
problem of convergence ifN increases since from moderate to large values ofr the terms
d
(1)
0 ln r − d(1)−1/r can exceedω31r

2/2. However, it is obvious that by solving the truncated
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0
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1

N

Figure 1. The eigenvalues of (15) as a function ofN . Circles: 32
1, . . . , 3

2
N for n3 = p = 0,

filled circles:32
1 for n3 = 0, p = 1, triangles and filled triangles:32

1 for n3 = 1, p = 0 and 1,
respectively.

equations (5)ψ is obtained with finite spatial norm (9) at any eigenvalueE∗(N). An infinite
spatial norm (9) is excluded: continuum wavefunctions cannot be obtained since for anyl

ul(r) is a sum of terms with∝ exp(−ω3mr
2), 3m > 0. Continuum solutions of (5) do not

exist ifN <∞.

3.3. Numerical solution

By a shooting method using the Numerov integrator formula (Barcza 1994), (5) was solved.
(This method may correspond to the ‘direct numerical integration’ to the ‘exact solution’ of
Ruderet al (1994), as far as can be inferred from the sparse numerical detail given therein.)
The outward and inward integrations were begun from (10) and (17), respectively, i.e. a number
of initial value problems were solved on a finite interval [0, rs ], 1 � rs < ∞ so thatE∗(N)

and the asymptotically free parameters were varied in order to find the coincidence oful(rm)

andul(rm + h), l = |n3| + p, . . . whereh is the step size at the mesh pointrm. The number
of coincidences to be achieved is 2N , that of the free parameters is 2N + 1; one of them, e.g.
c
(|n3|+p)
0 , is the normalization factor. The balance is that the asymptotically free parameters are

consumed completely by the fitting procedure and the uniqueness of a solution is provided by
fixing E∗(N), c(|n3|+p+2)

0 , . . . , c
(|n3|+p+2N−2)
0 , C(1)|n3|+p, . . . , C

(N ′)
|n3|+p since allul(r), dul/dr became

continuous functions (up to O(h5) of the Numerov integrator formula) in the whole interval
06 r 6∞.

The numerical solutions have shown that atr � 1 channel coefficientsul(r), l =
|n3| + p, . . . of the truncated equations (5) converge to the termm = 1 from (17): indication
of C(1)|n3|+p = 0 was not found in the interval 0< ω � 1. Changes of sign inc(l)0 with a rapid
reordering of the channel weightsu2

〈l〉 were observed in narrow ranges ofω where the slope of
curvesE∗(N)(ω) changed strongly, e.g. at avoided crossings.

With increasingN the convergence ofE∗(N) slowed down or turned into a drift. Spurious
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abrupt changes ofE∗(N) were found ifrs was increased, instabilities appeared which indicated
the loss of digits and could be mastered by increasing the accuracy of the computations.
For example, in the interval 10−4 6 ω 6 10−2, to achieve an accuracy 10−6 of E∗ in
integrations withN = 2 the double precision accuracy 10−15 was sufficient for the levels
which originated from the main quantum numbern = 6 atω = 0, while forN = 4 the
extended precision accuracy 10−35 was necessary. ForN = 6 some failures were found even
with extended precision. The observed loss of digits in the integrations far exceeded the loss
from the cumulative error of the integrator formula which was estimated according to Sloan
(1968) and Johnson (1977). The most probable explanation for this computational finding
seems to be that positive Lyapunov exponents exist if the evolution oful(r), 0 6 r 6 rs is
considered as a function of the free parametersc

(l)
0 ,C(m)|n3|+p: the exponents ln|1ul(rm)/1c(l)0 |,

ln |1ul(rm)/1C(1)l | (Contopoulos and Barbanis 1989) were found to be increasing positive
numbers with increasingrm andrs − rm where1ul(rm) is the relative error oful(rm) to which
the relative error oful(r) at r � 1 or r � 1 propagated; this latter relative error is given by
1c

(l)
0 and1C(1)l , respectively. In other words: to obtain a fit of 10−6 accuracy in the mesh point

the shooting—an initial value problem for the free parameters—had to be started by a much
better accuracy, e.g. 10−20 or even 10−35. With increasingω, N or approaching an avoided
crossing the digit loss became increasingly severe. Further discussion of this issue is beyond
the scope of the present paper: e.g. whether these instabilities belong to an intrinsic feature of
the diamagnetic Coulomb problem or to the non-optimal choice of the basis functions only.

4. The complete solution at the irregular singularity

Since the only parameter of the recurrence relation (14) is32 in its middle term the series of
C|n3|+p+2N , N → ∞ cannot be terminated by any value of32. Consequently, atr → ∞ the
presumed convergence of (4) must be examined in order to substantiate its approximation by
a truncated sum. The infinite continued fraction in (15) represents a transcendental function
and is principally different fromFN(32) with finiteN which is a polynomial.

A non-trivial asymptotic solution of type (12) can exist ifF∞(32) is convergent, i.e. if

lim
N→∞

∣∣∣∣ bN−1

aN−2aN−1

∣∣∣∣ 6 1

4
(21)

(Worpitzky theorem: Bulirsch and Stoer 1968). On expandingL−2, L0, L2, assuming
32 = λ0+λ1/l+O(l−2), and introducing these expressions in (21), the criterion of convergence
is that either

32 6 lim
l→∞

(4n2
3 − 1)/4l2 = 0 (22)

or

32 > lim
l→∞

1 + O(l−2) = 1 (23)

wherel = |n3| +p + 2N . A forbidden interval is 0< 32 < 1 where the points are in figure 1:
F∞(32) is divergent here and (15) cannot be satisfied, which has the consequence that in the
forbidden interval only the trivial solution exists:Cl = 0 for anyl.

As a second step, outside the forbidden interval the roots32 must be determined which
satisfy (15). F∞(32) was expanded according to Bulirsch and Stoer (1968); figure 2 is
a plot of its values forn3 = 0, 1, 2 andp = 0, 1 which were obtained numerically. If
−∞ < 32 < −0.5 or 1.5< 32 <∞ the inclusion of a few (<10) fraction lines provides an
accuracy 10−5 of F∞(32), an expansion in terms of3−2 shows that there are no roots in these
intervals. Approaching32 = 0 or 1 the number of necessary fraction lines to this accuracy
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2

Figure 2. A plot of F∞(32). Solid curves:p = 0; dashed curves:p = 1; the thin, moderately
thick and thick curves correspond ton3 = 0, 1, 2 respectively.F∞(32) was found to be divergent
in the empty region 0< 32 < 1. The extrapolation of the solid curves touches the short horizontal
line,F∞(32) = 0, asymptotically at32 = 1.

increases rapidly: at32 = −10−5 or 1.000 01 some 100 fraction lines must be taken into
account. This worsening of convergence is the consequence of approaching the limits (22),
(23). Extrapolation of the numerical results indicates that the root of (15) is32 = 1 forp = 0,
n3 = 0, 1, 2, . . . while for the curves ofp = 1 F∞(32) 6= 0 in the allowed domains32 6 0
or32 > 1. For computational convenienceN < 500 was set, the nature of the divergence of
F∞(32) was examined numerically if 0< 32 < 1 : |F∞(32)| < ∞ but limN→∞ FN(32)

does not exist. Depending on the distance from32 = 1
2, which is a critical value for (15)

because ofaN → 0, the valuesFN(32), N = m0, . . . , mc showed a quasi-periodicity where
mc −m0 was a small integer at3 = 1

2, and a large integer at32 ≈ 0, 1.

5. Discussion

The adiabatic approximationalways has non-trivial and bounded solutions exclusively with a
discrete spectrum which indicates the existence of a quasi-Landau quantization. The adiabatic
wavefunctionsul(r)P

|n3|
l (η) and (4) are, however, essentially different from a mathematical

point of view.
The non-trivial asymptotic solutions of the truncated system (5)are bounded, and their

norm is finite at any value ofω andE∗(N). They report on discrete levels only; the continuum
solution does not exist in the framework of this approximation. Their convergence is slow,
and at fixedm and increasingN ,32

m→ 0 was found by the numerical solution of (15), i.e. at
r →∞ the leading term of the asymptotic channel coefficients converges to

ul(r)→ ûl = C(1)l [1 + O(r−2)] exp[−(−2E∗)1/2r +Z ln r/(−2E∗)1/2] (24)

lim
l→∞

C
(1)
l+2/C

(1)
l = 1. (25)
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This solution has an absorption threshold at the wrong positionE∗ = 0; for anyE∗ its norm
is infinite, and must be rejected on the ground that atr →∞ (24) and (25) lead to

ψ(r, η)→
∑
l

ûl(r)P
|n3|
l (η) ≈ û2N−2+|n3|+p(r)

∑
l

P
|n3|
l (η) (26)

which becomes unbounded withN → ∞ along the axisη = ±1, as can be seen from the
generating function ofP |n3|

l (η) (Schiff 1968). All asymptotically free parameters of (17) now
have a fixed value, and therefore, there are no parameters to avoid the behaviour (26) (e.g.,
by a combination of terms appearing on the right-hand side of (24)). The instabilities of the
numerical solution reported in section 3.3 can probably have their origin in the unstable or
wrong behaviour of (24) according to which the integrations started.

The wavefunctions from (17) withm = 1, and (24), have contradictory features;
notwithstanding, saturation ofE∗(N) could be reported by Ruderet al(1994), even if increasing
difficulties with the spherical basis were mentioned for the levelsn > 4 (of ω = 0): for the
level 4sσ(n = 4, l = 0, n3 = 0) N = 2–24, and for the level 5sσ N = 23–20 terms were
necessary in the intervals 10−4 6 ω 6 3× 10−2, 10−4 6 ω 6 7× 10−4, respectively. If
E∗(N) is convergent with increasingN , it converges to pseudo-eigenvalues which belong to a
wavefunction violating the boundary condition of boundedness atr →∞, η = ±1. Solving
the truncated system (5) correctly does not guaranteeE∗(N) → E∗ in itself if N is increased.
The relation ofE∗(N) to E∗ depends upon whether by chance the truncated sum (4) does or
does not approximate toψ in the interval where the Hamiltonian gives large weight to it in the
energy integral.

The complete system of equations (5)has either a trivial solution, i.e.N ′ = 0 for p = 1,
or the solution belonging to the extrapolated32 = 1 if p = 0, n3 = 0, 1, . . . , i.e.N ′ = 1:

ul(r)→ C
(∞)
l [1 + O(r−4)] exp[−ωr2/2 + (E∗/ω − 1/2) ln r − Z/ωr] (27)

lim
l→∞

C
(∞)
l+2 /C

(∞)
l = −1. (28)

Two objections can be raised against (27): it leads to the wavefunction of a discrete level but
its norm is divergent according to (9) and the sum (4) is not convergent in the sense that its
limit does not exist because of (28). For example, atη = 1, r � 1 the sum has two discrete
values depending upon whetherl/2 is even or odd for its last term:

ψ(r, 1)→ [1 + O(r−4)] exp[−ωr2/2 + (E∗/ω − 1/2) ln r − Z/ωr]
∑
l

(−1)l/2. (29)

Numerical attempts failed to find this solution by settingC(N)l 6= 0,C(m)l = 0, l = |n3|+p, . . . ,
m = 1, . . . , N − 1 in (17). 26 N 6 6 was used in the computations.

Caution is appropriate with an expansion of type (4):ψ(r, η) was expanded in terms
of the complete system of orthogonal functionsP |n3|

l (η); nevertheless, the truncated and the
infinite expansions converge to physically unacceptable wavefunctions which are of a different
type. Concerning the structure of the coupled equations forul(r) the basic difference between
N < ∞ andN = ∞ is that by the truncation singular terms of the complete system (5) are
neglected. This radically modifies the character of the solutions in the singularityr → ∞
since the coupling is proportional tor2 in every equation.

6. Conclusions

It has been shown that in the diamagnetic Coulomb problem the spherical basis provides a
doubtful expansion of the wavefunction. If the complete infinite expansion is used it allows
only a trivial or a divergent solution. If the expansion is truncated arbitrarily with an increasing
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number of terms the solution converges to an unbounded wavefunction. From a mathematical
point of view these possibilities are solutions to equations (5) but not to the diamagnetic
Coulomb problem. In all respects, perfect expansion can be obtained to the diamagnetic
Coulomb problem by using the angular oblate functions, since in this expansion the system
of second-order ordinary differential equations is completely decoupled atr → ∞ and
here the asymptotic solution is the convergent sum of the solutions of adiabatic equations.
Starace and Webster (1979) proposed the use of the angular oblate functions and solved
the adiabatic approximation while the non-adiabatic approximation was solved by Barcza
(1994) as an example for quasi-separable quantum mechanical eigenvalue problems; extensive
tabular material from this expansion is not available yet. In a forthcoming paper the complete
asymptotic analysis and numerical solution will be given using this basis. This will be the
proper solution to the diamagnetic Coulomb problem at low and moderate field strength in the
framework of eigenfunction expansions.
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Appendix A. Equivalent forms to (4)

The general form of two conventional expansions is involved in (4). In a truncated form
these expansions were used in the diagonalization technique (e.g., Holleet al 1986). These
expansions are as follows.

(a) If the complete diamagnetic termω2r2(1− η2) is taken as perturbation, the rest of (3)
is separable. The assumption

ψ =
∑
k,l

c
(a)
kl R

(a)
k (r)P

|n3|
l (η) (A.1)

will be appropriate whereR(a)k (r) is a hydrogenic radial wavefunction withk = 1, 2, . . .
denoting the levels at a fixedl. By definition, the sum represents an appropriate integral over
the continuum components. The first part of (3) without the termω2r2 is the radial Schr̈odinger
equation of hydrogen; in its hydrogenic energy spectrumε(a) there is one absorption threshold:
ε(a) = 0.

(b) If the term−ω2r2η2 is taken as a perturbation, the rest of (3) is separable. The
wavefunction must be assumed to be of the form

ψ =
∑
k,l

c
(b)
kl R

(b)
k (r)P

|n3|
l (η) (A.2)

whereR(b)k satisfies (19) ifL0 = 1, l = 0,E∗(1) = ε(b) are introduced.ε(b) is of a composite-
type spectrum without continuum: it follows Balmer spacing for the low-lying levels atω � 1,
and Landau spacing 2ω for highly excited levels (Barcza 1996).

The spectrumε(b) consists of discrete elements only; the basis functionsR
(b)
k build up

a complete orthogonal system. Consequently, anyψ of finite norm is represented by the
form (A.2) (von Neumann 1980, Courant and Hilbert 1968). Since atr � 1R(b)k is proportional
to exp(−ωr2/2), ψ is obtained by the truncated (A.2) which is of bound type at any energy
eigenvalue.

The spectrumε(a) consists of discrete elements and a continuum as well. Depending on
the values ofc(a)kl , ψ can be of bound or continuum type. Above the hydrogenic absorption
threshold,E∗ = 0, a wavefunction of both types can be constructed by (A.1).
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If (A.1) or (A.2) are used in practical computations for bound states a huge finite system of
homogeneous linear equations must be solved forckl which has non-trivial solutions at discrete
values ofE∗—Holle et al (1986) gave an example for (A.1).

Using (4), ψ is expanded in terms ofP |n3|
l at each pointr continuously; the

assumptions (A.1) and (A.2) can be unified:

ul(r) =
∑
k

c
(j)

kl R
(j)

k (r) j = a or b (A.3)

whose common form is (4). It can be guessed that these two expansions suffer from the same
faults as (4).
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